QUIC Graphs: Relational Invariant
Generation for Containers - Demo

Arlen Cox, Bor-Yuh Evan Chang, and Sriram Sankaranarayanan

QUIC Graphs offer an efficient means for generating abstract domains representing
sets and set properties of containers. To demonstrate the analyzer, we present two
demo programs using two different underlying scalar domains. These will
demonstrate the results of the analysis and the flexibility of the analysis.

Preparing to Run Demos

The analyzer is provided as a VirtualBox virtual machine. Install the virtual machine
and run it. It will boot to the Ubuntu desktop. Start the terminal and enter the
following commands:

$ cd set_analysis/demo

Selecting Scalar Domains

Because QUIC graphs build abstract domains from scalar abstract domains we can
select from two different abstract domains. The default scalar abstract domain is
the APRON polyhedron-based domain, but there are a variety of domains from
which to choose:

Flag Domain

Represents equivalence classes of variables and
constants. It uses a naive implementation of union
find and partition refinement to implement basic
domain operations. Itis implemented in the
following file:
~/set_analysis/src/EqClassDomain.ml

-eq Equivalence Class

This is the APRON abstract domain for octagons.
Octagons represent constraints of the form

+x + y + ¢ < 0 where x and y are variables and ¢
is a constant. Itis implemented in the following
file:
~/set_analysis/src/ApronDomain.ml

-oct Octagon




This is the APRON abstract domain for polyhedral.
They represent arbitrary convex linear

-poly Polyhedron relationships between constants and variables. It
is implemented in the following file:

~/set_analysis/src/ApronDomain.ml

Note that all available abstract domains are relational. This implementation of QUIC
graphs relies upon relations in the scalar domain to perform reductions. The
domain is sound without a relational scalar domain, but it loses most precision.

Analyzing Copy Using a Polyhedron-based Scalar Domain

Run the this basic analysis using the following command:

$ ../Main —poly copy.js@

This will run the analysis on the copy program, attempting to prove assertions
present in the program. It will also produce auxiliary files showing the generated
invariants at many program points in the intermediate language. They are most
easily viewed in the generated HTML file:

$ firefox copy.html

This shows the set and numeric constraints generated throughout the program in
red.

Analyzing Copy Using an Equivalence Class Scalar Domain
Identical to the polyhedron-based analysis, run the analysis using an equivalence
class domain:

$ ../Main -eq copy.js0@

Because the QUIC graph domain is constructed on the fly, it can easily be switched to
this simpler domain that is not part of the APRON library. Similarly this domain is
sufficient to prove all properties in this program, so the output is empty.

Analyzing Filter

The filter program is like the copy program except that it does not copy every
element. It only copies the elements greater than 10 and less than or equal to 11.
This may seem like a trivial program, but it allows us to state an invariant at the end
of the program that is expressible in both the polyhedron domain and in the




equivalence class domain. However, because we used inequalities in the
specification of the filter, the equivalence class domain loses too much information
about what is in the set to prove the second property. Note that it can still prove
that the result set r is a subset of the input set s:

$ ../Main -eq filter.js0

Now we see that a property could not be proven. This is due to the imprecision of
the equivalence class abstract domain. This is because elements that are included
are those greater than 10 and less than or equal to 11, which is not representable
using equivalence classes. However polyhedrons can represent this fact:

$ ../Main —poly filter.js0

If we view the generate invariants, we see that they are quite complex:

$ firefox filter.html

This complexity comes from history variables and variables introduced by
converting the program to A-normal form. If we look for critical facts, such as
rC{w €s|w>10Aw < 11} are represented in the constraints where the
verification happens.

Running Benchmarks
The benchmarks and many other sample programs are contained in a different
directory:

$ cd ~/set_analysis/test.js0@

They are written in a special language for encoding set constraints. Some of the
programs have been translated from functions in the python test suite with the
matching name. Others are adapted from the python test suite:

Programs adapted directly from the Python test

. "
./factored_original/* .0 They are typically finite state.

Modified programs from the Python test suite.
./factored_nondet/* They have been modified to make them more
generic. They are typically infinite state.

./other_tests/* Simple sanity check tests




% A variety of tests developed over the course of the
’ project; some before and some after publication.

The tests from the paper can be run using the . /run_tests. sh script. The
results are in the various log files generated for each benchmark run.




